

MEDGEN

Developing Medical Genetics Education Through Curriculum Reforms And Establishment Of Postgraduate Training Programs

THE CONTENT OF SPECIAL MEDICAL GENETICS COURSES FOR NON CLINICAL GENETICIST RESIDENTS

Yerevan State Medical University n.a. Mkhitar Heratsi

Competencies

At the completion of residency training, a medical resident should be able to:

- ✓ Perform an appropriate multigenerational family history and identify patients who have a personal medical condition and/or family history that indicates the risk of a genetically linked disorder, and provide appropriate counseling
- ✓ Effectively interview patients in order to obtain information about relevant genetic, environmental, and behavioral risk factors
- ✓ Understand the important social, behavioral, and psychological implications health- related genetic information can have for individuals and families

Knowledge

The resident should demonstrate the ability to apply knowledge of the following:

- ✓ Basic human genetics terminology, principles of human and medical genetics, and basic patterns of biological inheritance and variation
- \checkmark The role of genetic factors in health maintenance and disease prevention
- ✓ The difference between clinical diagnosis of disease and identification of genetic predisposition to disease
- ✓ The role of behavioral, social, and environmental factors that modify or influence genetics in the manifestation of disease
- ✓ The implementation of relevant practice guidelines or consensus statements
- ✓ The range of genetic approaches to treatment of disease (including pharmacogenomics and gene therapy)
- \checkmark The indications and resources for genetic testing and referral to genetic specialists
- ✓ The genetic testing and recording of genetic information regarding:
 - Screening for genetic abnormalities
 - Prenatal/preconception testing
 - Presymptomatic genetic testing
 - Carrier testing for genetic disorders
 - Confidentiality
 - Risk assessment
 - Informed consent

Skills

The resident should demonstrate the ability to independently perform or appropriately refer the following:

- ✓ Gather genetic family history information (including an appropriate multi-generational family history)
- ✓ Identify patients who would benefit from genetic services
- ✓ Explain basic concepts of probability, disease susceptibility, and the influence of genetic factors on maintenance of health and development of disease
- ✓ Appropriately seek assistance from and refer to genetics experts and peer support resources
- ✓ Obtain current information about genetics for self, patients, and colleagues
- ✓ Provide culturally appropriate information about the potential risks, benefits, and limitations of genetic testing
- ✓ Safeguard the privacy and confidentiality of the genetic information of patients
- ✓ Inform patients of potential limitations of maintaining privacy and confidentiality of genetic information

- Educate patients about availability of genetic testing and/or treatment for conditions seen frequently in practice
- ✓ Provide patients with an appropriate informed consent process to facilitate decision making related to genetic testing
- ✓ Utilize appropriate genetic and genomic information resources

Structure of Courses

Each course covers

- \checkmark theoretical lessons,
- ✓ workshops, case studies,
- \checkmark shadow clinical and clinical laboratory training,
- ✓ simulation of practical replacement, including genetic counselling

A. 2 week course "Clinical Cancer Genetics" for Oncologists

Topics Cancer Genetics Familial Adenomatous Polyposis Lych Syndrome Hereditary Breast and Ovarian Cancer Syndrome Gynecological cancer Multiple Endocrine Neoplasia Syndrome Neurofibromatosis Targeted therapy in oncology

B. 3 week course "Birth Defects and Congenital Disorders" for gynecologists, obstetricians, neonatologists, pediatricians

Topics

Congenital malformations (major and minor; single and multiple anomalies) Teratogenicity and related causes of dysmorphic features Chromosomal abnormality syndromes Skeletal dysplasia Single gene mutations as cause of birth defects and congenital disorders

C. 3 week course "Inborn Errors of Metabolism" for neonatologists, pediatricians, neurologists

Topics

Organic acidemias Fatty acid oxidation defects Primary lactic acidoses Aminoacidopathies Urea cycle defects Disorders of carbohydrate metabolism Lysosomal storage disorders

D. 1 week course "Autoinflammatory syndromes" for pediatricians, rheumatologists

Topics

Hereditary Periodic Fever Syndromes Familial Mediterranean fever TNF receptor-associated periodic syndrome Hyperimmunoglobulinemia D with periodic fever syndrome Cryopyrin-associated periodic syndromes

E. 1 week course "Multifactorial Diseases" for non-clinical geneticist residents

- Topics
- Marfan syndrome Cystic Fibrosis Polycystic kidney disease Inherited cardiac disorders Hypercholesterolemias Hereditary deafness Hereditary ophtalmological disorders Cleft lip/palate Diabetes mellitus Metabolic syndrome Asthma and allergy Vascular disorders Amyloidosis

F. 1 week course "Medical Genomics" for non-clinical geneticist residents

Topics

Genomic analysis: from karyotype to next generation sequencing Next Generation Phenotyping with Face2Gene in the clinic, laboratory and for research Classical and banding cytogenetics – techniques in pre- and postnatal diagnostics Reporting in prenatal, postnatal and tumor cytogenetics Molecular cytogenetics FISH-applications in diagnostics Array-CGH – principles and applications PCR techniques and applications NIPT MLPA, related techniques and applications Preimplantation genetic diagnosis and preimplantation genetic screening Technical basis of Sanger sequencing Technical basis of NGS

G. 3 week course "Clinical Laboratory Genetics" for laboratory clinician residents

Topics

Karyotyping in pre- and postnatal diagnostics Molecular cytogenetics Array-CGH, principles and applications PCR techniques and applications MLPA, related techniques and applications Sanger sequencing, related techniques and applications NGS, related techniques and applications

H. 3 week course "Prenatal Genetics" for gynecologists, obstetricians

Topics

Genetic diagnosis and genetic screening Prenatal genetic diagnosis and genetic screening Risk calculation based on genetic screening Family risk calculation based on genetic diagnosis Non-invasive genetic screening, including NIPT Invasive cytogenetic diagnosis Invasive molecular genetic diagnosis Preimplantation genetic screening Preimplantation genetic diagnosis